Application of finite element analysis to honeycomb sandwich structures: a review

  • Emmanuel Chukwueloka Onyibo Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, Turkey
  • Babak Safaei Department of Mechanical Engineering Science, University of Johannesburg, Gauteng, South Africa
Keywords: Honeycomb, Sandwich, FEA, ANSYS, ABAQUS.

Abstract

Honeycomb sandwich is really one of the fundamentals to make a composite strong, stiff, very light, safe and have wonderful performance. Honeycomb materials are majorly used where high strength to weight ratio, stiffness to weight ratio is needed. Honeycomb sandwich consist of two face sheet or skin and a light core which can take many shapes, the common is hexagonal shape. The core handles shear load, while the skins resist compression and tension. This paper aims to guide the design of honeycomb sandwich structures done with finite element analysis software. The characteristic of honeycomb at microstructure and unit cell will be discussed Moreover, much demand on light weight honeycomb structures that can withstand heavy loads under different working condition are on high demand. Experimental approach can be time consuming and costly, this created room for massive research using FEA on loading response with various cores and thickness, in order to investigate the mechanical properties. This study will focus on the FEA of honeycomb sandwich done by many researches currently on commercial software’s ANSYS and ABAQUS, this will be a guideline for researches to see what has been done and what is obtainable using FEA software.

References

Aboudi, J., Arnold, S. M., & Bednarcyk, B. A. (2013). Micromechanics of composite materials: a generalized multiscale analysis approach. Butterworth-Heinemann.

Adams, R., Townsend, S., Soe, S., & Theobald, P. (2022). Finite element-based optimisation of an elastomeric honeycomb for impact mitigation in helmet liners. International Journal of Mechanical Sciences, 214, 106920. https://doi.org/10.1016/j.ijmecsci.2021.106920

Ahalya Kumar, K. V., Krishnan, B. R., Venkata Siva Prasad, K., & Rama Sreekanth, P. S. (2022). Comparative study of Inplane gradient cellular pattern honeycombs with Uniform compliant honeycombs. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2021.11.657

Ahmed, N., Zafar, N., & Janjua, H. Z. (2019). Homogenization of Honeycomb Core in Sandwich Structures: A Review. Proceedings of 2019 16th International Bhurban Conference on Applied Sciences and Technology, IBCAST 2019, 159–173. https://doi.org/10.1109/IBCAST.2019.8667144

Alhijazi, M., Zeeshan, Q., Qin, Z., Safaei, B., & Asmael, M. (2020). Finite Element Analysis of Natural Fibers Composites: A Review. Nanotechnology Reviews, 9(1), 853–875. https://doi.org/10.1515/ntrev-2020-0069

Allen, H. G. (1969). Analysis and Design of Structural Sandwich Panelsn Pergamon Press. New York.

Altenbach, H., & Öchsner, A. (Eds.). (2020). First-Order Shear Deformation Theory BT - Encyclopedia of Continuum Mechanics (p. 920). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-55771-6_300262

Amith Kumar, S. J., & Ajith Kumar, S. J. (2020). Low-velocity impact damage and energy absorption characteristics of stiffened syntactic foam core sandwich composites. Construction and Building Materials, 246, 118412. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.118412

Ashraff Ali, K. S., Suresh Kumar, S., Allen Jeffrey, J., Ravikumar, M. M., & Rajkumar, S. (2021). An insight into stress and strain analysis over on hexagonal aluminium sandwich honeycomb with various thickness glass fiber face sheets. Materials Today: Proceedings, 47, 493–499. https://doi.org/10.1016/j.matpr.2021.05.038

Atiqah, A., Ansari, M. N. M., & Premkumar, L. (2019). Impact and hardness properties of honeycomb natural fibre reinforced epoxy composites. Materials Today: Proceedings, 29, 138–142. https://doi.org/10.1016/j.matpr.2020.05.645

Audibert, C., Andréani, A. S., Lainé, É., & Grandidier, J. C. (2019). Discrete modelling of low-velocity impact on Nomex® honeycomb sandwich structures with CFRP skins. Composite Structures, 207, 108–118. https://doi.org/10.1016/j.compstruct.2018.09.047

Babu, K. P., Mohite, P. M., & Upadhyay, C. S. (2018). Development of an RVE and its stiffness predictions based on mathematical homogenization theory for short fibre composites. International Journal of Solids and Structures, 130–131, 80–104. https://doi.org/10.1016/j.ijsolstr.2017.10.011

Bargmann, S., Klusemann, B., Markmann, J., Schnabel, J. E., Schneider, K., Soyarslan, C., & Wilmers, J. (2018). Generation of 3D representative volume elements for heterogeneous materials: A review. Progress in Materials Science, 96, 322–384. https://doi.org/10.1016/j.pmatsci.2018.02.003

Birman, V., & Kardomateas, G. A. (2018). Review of current trends in research and applications of sandwich structures. Composites Part B: Engineering, 142, 221–240. https://doi.org/10.1016/j.compositesb.2018.01.027

Chen, D. H. (2011). Bending deformation of honeycomb consisting of regular hexagonal cells. Composite Structures, 93(2), 736–746. https://doi.org/10.1016/j.compstruct.2010.08.006

Chen, X., Yu, G., Wang, Z., Feng, L., & Wu, L. (2021). Enhancing out-of-plane compressive performance of carbon fiber composite honeycombs. Composite Structures, 255, 112984. https://doi.org/https://doi.org/10.1016/j.compstruct.2020.112984

Chen, Y., Fu, M. H., Hu, H., & Xiong, J. (2022). Curved inserts in auxetic honeycomb for property enhancement and design flexibility. Composite Structures, 280, 114892. https://doi.org/10.1016/j.compstruct.2021.114892

Chen, Y., & Wang, Z.-W. (2022). In-plane elasticity of the re-entrant auxetic hexagonal honeycomb with hollow-circle joint. Aerospace Science and Technology, 123, 107432. https://doi.org/10.1016/j.ast.2022.107432

Dai, X., Yuan, T., Zu, Z., Ye, H., Cheng, X., & Yang, F. (2020). Experimental investigation on the response and residual compressive property of honeycomb sandwich structures under single and repeated low velocity impacts. Materials Today Communications, 25, 101309. https://doi.org/10.1016/j.mtcomm.2020.101309

Dimassi, M. A., John, M., & Herrmann, A. S. (2018). Investigation of the temperature dependent impact behaviour of pin reinforced foam core sandwich structures. Composite Structures, 202, 774–782. https://doi.org/https://doi.org/10.1016/j.compstruct.2018.04.012

Dutra, J. R., Moni Ribeiro Filho, S. L., Christoforo, A. L., Panzera, T. H., & Scarpa, F. (2019). Investigations on sustainable honeycomb sandwich panels containing eucalyptus sawdust, Piassava and cement particles. Thin-Walled Structures, 143, 106191. https://doi.org/10.1016/j.tws.2019.106191

Fazilati, J., & Alisadeghi, M. (2016). Multiobjective crashworthiness optimization of multi-layer honeycomb energy absorber panels under axial impact. Thin-Walled Structures, 107, 197–206. https://doi.org/10.1016/j.tws.2016.06.008

Gao, X., Zhang, M., Huang, Y., Sang, L., & Hou, W. (2020). Experimental and numerical investigation of thermoplastic honeycomb sandwich structures under bending loading. Thin-Walled Structures, 155, 106961. https://doi.org/10.1016/j.tws.2020.106961

Ghongade, G., Kalyan, K. P., Vaira Vignesh, R., & Govindaraju, M. (2019). Design, fabrication, and analysis of cost effective steel honeycomb structures. Materials Today: Proceedings, 46, 4520–4526. https://doi.org/10.1016/j.matpr.2020.09.694

Ghongade, G., Kalyan, K. P., Vaira Vignesh, R., & Govindaraju, M. (2020). Design, fabrication, and analysis of cost effective steel honeycomb structures. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.09.694

Gibson, L. J., & Ashby, M. F. (1999). Cellular solids: structure and properties. Cambridge university press.

Gibson, L. J., Ashby, M. F., Zhang, J., & Triantafillou, T. C. (1989). Failure surfaces for cellular materials under multiaxial loads—I. Modelling. International Journal of Mechanical Sciences, 31(9), 635–663.

Grover, N., Maiti, D. K., & Singh, B. N. (2014). An efficient C0 finite element modeling of an inverse hyperbolic shear deformation theory for the flexural and stability analysis of laminated composite and sandwich plates. Finite Elements in Analysis and Design, 80, 11–22. https://doi.org/10.1016/j.finel.2013.11.003

Harland, D., Alshaer, A. W., & Brooks, H. (2019). An experimental and numerical investigation of a novel 3D printed sandwich material for motorsport applications. Procedia Manufacturing, 36, 11–18. https://doi.org/10.1016/j.promfg.2019.08.003

Hu, C., Duan, Y., Liu, S., Yan, Y., Tao, N., Osman, A., Ibarra-Castanedo, C., Sfarra, S., Chen, D., & Zhang, C. (2019). LSTM-RNN-based defect classification in honeycomb structures using infrared thermography. Infrared Physics and Technology, 102, 103032. https://doi.org/10.1016/j.infrared.2019.103032

Hussain, M., Khan, R., & Abbas, N. (2019). Experimental and computational studies on honeycomb sandwich structures under static and fatigue bending load. Journal of King Saud University - Science, 31(2), 222–229. https://doi.org/10.1016/j.jksus.2018.05.012

Kadum Njim, E., Bakhy, S. H., & Al-Waily, M. (2021). Analytical and numerical investigation of buckling load of functionally graded materials with porous metal of sandwich plate. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2021.03.557

Kar, U. K., & Srinivas, J. (2020). Material modeling and analysis of hydroxyapatite/titanium FGM plate under thermo-mechanical loading conditions. Materials Today: Proceedings, 33, 5498–5504. https://doi.org/10.1016/j.matpr.2020.03.312

Karaduman, Y., & Onal, L. (2016). Flexural behavior of commingled jute/polypropylene nonwoven fabric reinforced sandwich composites. Composites Part B: Engineering, 93, 12–25. https://doi.org/https://doi.org/10.1016/j.compositesb.2016.02.055

Kazemi, M. (2021). Experimental analysis of sandwich composite beams under three-point bending with an emphasis on the layering effects of foam core. Structures, 29, 383–391. https://doi.org/https://doi.org/10.1016/j.istruc.2020.11.048

Khan, S. Z., Mustahsan, F., Mahmoud, E. R. I., & Masood, S. H. (2019). A novel modified re-entrant honeycomb structure to enhance the auxetic behavior: Analytical and numerical study by FEA. Materials Today: Proceedings, 39, 1041–1045. https://doi.org/10.1016/j.matpr.2020.05.083

Kormanikova, E., Zmindak, M., Kotrasova, K., & Novak, P. (2021). Homogenization and Frequency Analysis of Composite Sandwich Panel with Fiber Reinforced Polymer Matrix Laminated Faces. In Mechanisms and Machine Science (Vol. 97, pp. 117–123). Springer Science and Business Media B.V. https://doi.org/10.1007/978-3-030-64690-5_11

Korupolu, D. K., Budarapu, P. R., Vusa, V. R., Pandit, M. K., & Reddy, J. N. (2022). Impact analysis of hierarchical honeycomb core sandwich structures. Composite Structures, 280, 114827. https://doi.org/https://doi.org/10.1016/j.compstruct.2021.114827

Krishna, P. S., Mohan, A., Ahamed, P. U., & Jani, S. P. (2022). Materials Today : Proceedings Bending analysis of honeycomb sandwich panels with metallic face sheets and GFRP core. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2021.12.050

Kumar, R., & Patel, S. (2019). Failure analysis on octagonal honeycomb sandwich panel under air blast loading. Materials Today: Proceedings, 46, 9667–9672. https://doi.org/10.1016/j.matpr.2020.07.525

Kumar, R., & Patel, S. (2020). Failure analysis on octagonal honeycomb sandwich panel under air blast loading. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.07.525

Lan, X., Feng, S., Huang, Q., & Zhou, T. (2019). A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores. Aerospace Science and Technology, 87, 37–47. https://doi.org/10.1016/j.ast.2019.01.031

Laulkar, R., Gaikwad, M., Mohan, A., & Joshi, M. (2020). Flexural behavior of sandwich structures with Rohacell 71-hero foam and ox-honeycomb cores. Materials Today: Proceedings, 21, 1116–1122. https://doi.org/10.1016/j.matpr.2020.01.059

Liu, K., Zong, S., Li, Y., Wang, Z., Hu, Z., & Wang, Z. (2022). Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load. Marine Structures, 84, 103198. https://doi.org/10.1016/j.marstruc.2022.103198

Luo, H. C., Ren, X., Zhang, Y., Zhang, X. Y., Zhang, X. G., Luo, C., Cheng, X., & Xie, Y. M. (2022). Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression. Composite Structures, 280, 114922. https://doi.org/10.1016/j.compstruct.2021.114922

Manjusha, M., & Althaf, M. (2020). Numerical analysis on flexural behaviour of GFRP sandwich roof panel with multilayer core material. IOP Conference Series: Earth and Environmental Science, 491(1). https://doi.org/10.1088/1755-1315/491/1/012025

Masters, I. G., & Evans, K. E. (1996). Models for the elastic deformation of honeycombs. Composite Structures, 35(4), 403–422.

Meyghani, B., Awang, M. B., Emamian, S. S., Mohd Nor, M. K. B., & Pedapati, S. R. (2017). A comparison of different finite element methods in the thermal analysis of friction stir welding (FSW). Metals, 7(10), 450.

Naveen, J., Jawaid, M., Vasanthanathan, A., & Chandrasekar, M. (2019). 9 - Finite element analysis of natural fiber-reinforced polymer composites. In M. Jawaid, M. Thariq, & N. B. T.-M. of D. P. in B. Saba Fibre-Reinforced Composites and Hybrid Composites (Eds.), Woodhead Publishing Series in Composites Science and Engineering (pp. 153–170). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-102289-4.00009-6

Nguyen, N. V, Nguyen-Xuan, H., Nguyen, T. N., Kang, J., & Lee, J. (2021). A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement. Composite Structures, 259, 113213. https://doi.org/https://doi.org/10.1016/j.compstruct.2020.113213

Omidali, M., & Khedmati, M. R. (2018). Numerical investigation on novel geometrical configuration for adhesively bonded T-joint between aluminum and sandwich panel. Thin-Walled Structures, 131(June), 122–134. https://doi.org/10.1016/j.tws.2018.06.039

Papakokkinos, G., Castro, J., Oliet, C., & Oliva, A. (2022). Computational investigation of the hexagonal honeycomb adsorption reactor for cooling applications: Honeycomb adsorption reactor for cooling. Applied Thermal Engineering, 202, 117807. https://doi.org/10.1016/j.applthermaleng.2021.117807

Petras, A. (1999). Design of sandwich structures. Proceedings of the Estonian Academy of Sciences, 4–8. https://www.repository.cam.ac.uk/handle/1810/236995

Pirouzfar, S., & Zeinedini, A. (2021). Effect of geometrical parameters on the flexural properties of sandwich structures with 3D-printed honeycomb core and E-glass/epoxy Face-sheets. Structures, 33, 2724–2738. https://doi.org/https://doi.org/10.1016/j.istruc.2021.06.033

Qiu, C., Guan, Z., Jiang, S., & Li, Z. (2017). A method of determining effective elastic properties of honeycomb cores based on equal strain energy. Chinese Journal of Aeronautics, 30(2), 766–779. https://doi.org/10.1016/j.cja.2017.02.016

Rajaneesh, A., Patel, H. G., & Shimpi, R. P. (2020). Finite element bending and free vibration analysis of layered plates using new first order shear deformation theory. Composite Structures, 257, 113143. https://doi.org/10.1016/j.compstruct.2020.113143

REN, Y., DENG, Y., & JIANG, H. (2021). Core reinforcement design for improving flexural energy-absorption of corrugated sandwich composite structure. Chinese Journal of Aeronautics, 34(5), 510–522. https://doi.org/10.1016/j.cja.2020.10.002

Roy, R., Kweon, J. H., & Choi, J. H. (2014). Meso-scale finite element modeling of Nomex honeycomb cores. Advanced Composite Materials, 23(1), 17–29. https://doi.org/10.1080/09243046.2013.862382

Roy, R., Park, S. J., Kweon, J. H., & Choi, J. H. (2014). Characterization of Nomex honeycomb core constituent material mechanical properties. Composite Structures, 117(1), 255–266. https://doi.org/10.1016/j.compstruct.2014.06.033

Safaei, B., & Fattahi, A. M. (2015). Molecular Dynamics Simulation For Buckling Analysis At Nanocomposite Beams. Zenodo, https://doi.org/10.5281/zenodo.1109358

Safaei, B., Fattahi, A. M., & Chu, F. (2018). Finite element study on elastic transition in platelet reinforced composites. Microsystem Technologies, 24(6), 2663–2671. https://doi.org/10.1007/s00542-017-3651-y

Sorohan, S., Constantinescu, D. M., Sandu, M., & Sandu, A. G. (2019). In-plane homogenization of commercial hexagonal honeycombs considering the cell wall curvature and adhesive layer influence. International Journal of Solids and Structures, 156–157, 87–106. https://doi.org/10.1016/j.ijsolstr.2018.08.007

Sorohan, Ş., Sandu, M., Sandu, A., & Constantinescu, D. M. (2016). Finite Element Models Used to Determine the Equivalent In-plane Properties of Honeycombs. Materials Today: Proceedings, 3(4), 1161–1166. https://doi.org/10.1016/j.matpr.2016.03.013

Stocchi, A., Colabella, L., Cisilino, A., & Álvarez, V. (2014). Manufacturing and testing of a sandwich panel honeycomb core reinforced with natural-fiber fabrics. Materials and Design, 55, 394–403. https://doi.org/10.1016/j.matdes.2013.09.054

Thomsen, O. (2009). Sandwich Materials for Wind Turbine Blades -- Present and Future. Journal of Sandwich Structures & Materials - J SANDW STRUCT MATER, 11, 7–26. https://doi.org/10.1177/1099636208099710

Timoshenko, S., & Woinowsky-Krieger, S. (1959). Theory of plates and shells (Vol. 2). McGraw-hill New York.

Tiwari, G., & Khaire, N. (2022). Ballistic performance and energy dissipation characteristics of cylindrical honeycomb sandwich structure. International Journal of Impact Engineering, 160, 104065. https://doi.org/10.1016/j.ijimpeng.2021.104065

Torabi, J., & Niiranen, J. (2021). Microarchitecture-dependent nonlinear bending analysis for cellular plates with prismatic corrugated cores via an anisotropic strain gradient plate theory of first-order shear deformation. Engineering Structures, 236, 112117. https://doi.org/10.1016/j.engstruct.2021.112117

Vijaya Ramnath, B., Elanchezhian, C., Manickavasagam, V. M., Surya Narayanan, R., Sudharshan, R., & Pugazhendhi, G. (2019). A review on sandwich composites and their advancements. Materials Today: Proceedings, 16, 1146–1151. https://doi.org/10.1016/j.matpr.2019.05.207

Wahl, L., Maas, S., Waldmann, D., Zürbes, A., & Frères, P. (2012). Shear stresses in honeycomb sandwich plates: Analytical solution, finite element method and experimental verification. Journal of Sandwich Structures and Materials, 14(4), 449–468. https://doi.org/10.1177/1099636212444655

Wang, H., Ramakrishnan, K. R., & Shankar, K. (2016). Experimental study of the medium velocity impact response of sandwich panels with different cores. Materials & Design, 99, 68–82. https://doi.org/https://doi.org/10.1016/j.matdes.2016.03.048

Wang, Z. (2019). Recent advances in novel metallic honeycomb structure. Composites Part B: Engineering, 166, 731–741. https://doi.org/10.1016/j.compositesb.2019.02.011

Wang, Z., Tian, H., Lu, Z., & Zhou, W. (2014). High-speed axial impact of aluminum honeycomb - Experiments and simulations. Composites Part B: Engineering, 56, 1–8. https://doi.org/10.1016/j.compositesb.2013.07.013

Wei, X., Wu, Q., Gao, Y., & Xiong, J. (2020). Bending characteristics of all-composite hexagon honeycomb sandwich beams: experimental tests and a three-dimensional failure mechanism map. Mechanics of Materials, 148. https://doi.org/10.1016/j.mechmat.2020.103401

Wei, X., Wu, Q., Gao, Y., Yang, Q., & Xiong, J. (2022). Composite honeycomb sandwich columns under in-plane compression: Optimal geometrical design and three-dimensional failure mechanism maps. European Journal of Mechanics, A/Solids, 91, 104415. https://doi.org/10.1016/j.euromechsol.2021.104415

Wu, X., Li, Y., Cai, W., Guo, K., & Zhu, L. (2022). Dynamic responses and energy absorption of sandwich panel with aluminium honeycomb core under ice wedge impact. International Journal of Impact Engineering, 162, 104137. https://doi.org/10.1016/j.ijimpeng.2021.104137

Xiang, X. M., You, Z., & Lu, G. (2018). Rectangular sandwich plates with Miura-ori folded core under quasi-static loadings. Composite Structures, 195, 359–374. https://doi.org/10.1016/j.compstruct.2018.04.084

Xiao, D., Chen, X., Li, Y., Wu, W., & Fang, D. (2019). The structure response of sandwich beams with metallic auxetic honeycomb cores under localized impulsive loading-experiments and finite element analysis. Materials and Design, 176, 107840. https://doi.org/10.1016/j.matdes.2019.107840

Xie, S., Wang, H., Yang, C., Zhou, H., & Feng, Z. (2020). Mechanical properties of combined structures of stacked multilayer Nomex® honeycombs. Thin-Walled Structures, 151, 106729. https://doi.org/10.1016/j.tws.2020.106729

Xiong, J., Ma, L., Pan, S., Wu, L., Papadopoulos, J., & Vaziri, A. (2012). Shear and bending performance of carbon fiber composite sandwich panels with pyramidal truss cores. Acta Materialia, 60(4), 1455–1466. https://doi.org/10.1016/j.actamat.2011.11.028

Xu, G. dong, Zeng, T., Cheng, S., Wang, X. hong, & Zhang, K. (2019). Free vibration of composite sandwich beam with graded corrugated lattice core. Composite Structures, 229, 111466. https://doi.org/10.1016/j.compstruct.2019.111466

Xu, Q., Bao, Y., Wang, Y.-Q., & Gao, H. (2021). Investigation on damage reduction method by varying cutting angles in the cutting process of rectangular Nomex honeycomb core. Journal of Manufacturing Processes, 68, 1803–1813. https://doi.org/https://doi.org/10.1016/j.jmapro.2021.07.006

Yang, B., Wang, H., Chen, Y., Fu, K., & Li, Y. (2021). Experimental evaluation and modelling of drilling responses in CFRP/honeycomb composite sandwich panels. Thin-Walled Structures, 169, 108279. https://doi.org/10.1016/j.tws.2021.108279

Yang, C., Xu, P., Yao, S., Xie, S., Li, Q., & Peng, Y. (2018). Optimization of honeycomb strength assignment for a composite energy-absorbing structure. Thin-Walled Structures, 127, 741–755. https://doi.org/10.1016/j.tws.2018.03.014

Yazici, M., Wright, J., Bertin, D., & Shukla, A. (2014). Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading. Composite Structures, 110(1), 98–109. https://doi.org/10.1016/j.compstruct.2013.11.016

Yogeswaran, R., & Pitchipoo, P. (2020). Characterization and machining analysis of AA3003 honeycomb sandwich. Materials Today: Proceedings, 28, 4–7. https://doi.org/10.1016/j.matpr.2019.12.101

Zaharia, S. M., Chicoș, L. A., Lancea, C., & Pop, M. A. (2020). Effects of homogenization heat treatment on mechanical properties of inconel 718 sandwich structures manufactured by selective laser melting. Metals, 10(5), 13–16. https://doi.org/10.3390/met10050645

Zhang, Y., Li, Y., Guo, K., & Zhu, L. (2020). Dynamic mechanical behaviour and energy absorption of aluminium honeycomb sandwich panels under repeated impact loads. Ocean Engineering, 108344. https://doi.org/10.1016/j.oceaneng.2020.108344

Zhang, Z., Wang, Y., Huang, L., Fu, Y., Zhang, Z., Wei, X., Sui, Y., Zhang, Q., & Jin, F. (2022). Mechanical behaviors and failure modes of sandwich cylinders with square honeycomb cores under axial compression. Thin-Walled Structures, 172, 108868. https://doi.org/https://doi.org/10.1016/j.tws.2021.108868

Zhao, B., Yu, W., Tseng, J., & Chiu, R. (2019). Characterization of bending stiffness for honeycomb sandwich plate in three-point bending test using mechanics of structure genome (K. K. (Ed.)). DEStech Publications. https://doi.org/10.12783/asc34/31396

Published
2022-03-23
How to Cite
Onyibo, E. C., & Safaei, B. (2022). Application of finite element analysis to honeycomb sandwich structures: a review. Reports in Mechanical Engineering, 3(1), 283-300. https://doi.org/10.31181/rme20023032022o