Evaluation of the accuracy of the resection template and restorations of the bone structures in the mandible area manufactured using the additive technique

  • Paweł Turek Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Rzeszów, Poland
  • Klaudia Jońca Faculty of Mathematics and Applied Physics, Rzeszów University of Technology, Rzeszów, Poland
  • Marcelina Winiarska Faculty of Mathematics and Applied Physics, Rzeszów University of Technology, Rzeszów, Poland
Keywords: Additive manufacturing;, Mandible, Resection template, Accuracy, CAD modelling


The article presents the current possibilities in the field of modeling and manufacturing models of anatomical structures, surgical templates, and implants in terms of planning surgical procedures in the area of ​​the mandible. In the first stage, the 3D reconstruction of the mandible geometry using the 3D-Slicer software was presented. The next step of the process consisted in modeling resection templates and supplementing the loss of the bone structure of the mandible. The last stage consisted of manufacturing models using the additive FDM method from PC-ISO material and performing an accuracy assessment. The models' accuracy using the additive FDM technique is within the tolerance range of +/- 0.2 mm. It is sufficient to use models when planning a procedure.


Ayoub, N., Ghassemi, A., Rana, M., Gerressen, M., Riediger, D., Hölzle, F., & Modabber, A. (2014). Evaluation of computer-assisted mandibular reconstruction with vascularized iliac crest bone graft compared to conventional surgery: a randomized prospective clinical trial. Trials, 15(1), 1-14.

Bagci, E. (2009). Reverse engineering applications for recovery of broken or worn parts and re-manufacturing: Three case studies. Advances in Engineering Software, 40, 407-418.

Bertol, L. S., Júnior, W. K., Da Silva, F. P., & Aumund-Kopp, C. (2010). Medical design: Direct metal laser sintering of Ti–6Al–4V. Materials & Design, 31(8), 3982-3988.

Boboulos, M. A. (2010). CAD-CAM & rapid prototyping application evaluation. Bookboon.

Budzik, G., Burek, J., Dziubek, T., Gdula, M., Płodzień, M., & Turek, P. (2015). The analysis of accuracy zygomatic bone model manufactured by 5-axis HSC 55 linear. Mechanik, 88(2), 23-39.

Budzik, G., Turek, P., Dziubek, T., & Gdula, M. (2020). Elaboration of the measuring procedure facilitating precision assessment of the geometry of mandible anatomical model manufactured using additive methods. Measurement and Control, 53(1-2), 181-191.

Ciocca, L., Mazzoni, S., Fantini, M., Persiani, F., Baldissara, P., Marchetti, C., & Scotti, R. (2012). A CAD/CAM-prototyped anatomical condylar prosthesis connected to a custom-made bone plate to support a fibula free flap. Medical & biological engineering & computing, 50, 743-749.

Cohen, A., Laviv, A., Berman, P., Nashef, R., & Abu-Tair, J. (2009). Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 108, 661-666.

Cuellar, C. N., Caicoya, S. J. O., Sanz, J. J. A., Cuellar, I. N., Muela, C. M., & Vila, C. N. (2014). Mandibular reconstruction with iliac crest free flap, nasolabial flap, and osseointegrated implants. Journal of Oral and Maxillofacial Surgery, 72(6), 1226-e1.

Dahake, S. W., Kuthe, A. M., Chawla, J., & Mawale, M. B. (2017). Rapid prototyping assisted fabrication of customized surgical guides in mandibular distraction osteogenesis: A case report. Rapid Prototyping Journal, 23(3), 602-610.

El‐Katatny, I., Masood, S. H., & Morsi, Y. S. (2010). Error analysis of FDM fabricated medical replicas. Rapid Prototyping Journal, 5(2), 56-67.

Fedorova, I. G. E., Filimonova, T. S., Zhuravlev, E. V. E., & Vasiliev, V. V. (2019). Estimation of the possibility of using reverse engineering in the aviation industry. Computational nanotechnology, 6(3), 68-73.

Goyal, M., Marya, K., Chawla, S., & Pandey, R. (2011). Mandibular osteosynthesis: a comparative evaluation of two different fixation systems using 2.0 mm titanium miniplates & 3-D locking plates. Journal of maxillofacial and oral surgery, 10, 316-320.

Hazeveld, A., Slater, J. J. H., & Ren, Y. (2014). Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. American Journal of Orthodontics and Dentofacial Orthopedics, 145(1), 108-115.

Hou, J. S., Chen, M., Pan, C. B., Wang, M., Wang, J. G., Zhang, B., & Huang, H. Z. (2012). Application of CAD/CAM-assisted technique with surgical treatment in reconstruction of the mandible. Journal of Cranio-Maxillofacial Surgery, 40(8), e432-e437.

Huotilainen, E., Jaanimets, R., Valášek, J., Marcián, P., Salmi, M., Tuomi, J., & Wolff, J. (2014). Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process. Journal of cranio-maxillofacial surgery, 42(5), e259-e265.

Ikawa, T., Shigeta, Y., Hirabayashi, R., Hirai, S., Hirai, K., Harada, N., & Ogawa, T. (2016). Computer assisted mandibular reconstruction using a custom-made titan mesh tray and removable denture based on the top-down treatment technique. Journal of prosthodontic research, 60(4), 321-331.

Korunovic, N., Marinkovic, D., Trajanovic, M., Zehn, M., Mitkovic, M., & Affatato, S. (2019). In silico optimization of femoral fixator position and configuration by parametric CAD model. Materials, 12(14), 2326.

Kumar, A., Jain, P. K., & Pathak, P. M. (2013). Reverse engineering in product manufacturing: an overview. DAAAM international scientific book, 39, 665-678.

Lee, K. Y., Cho, J. W., Chang, N. Y., Chae, J. M., Kang, K. H., Kim, S. C., & Cho, J. H. (2015). Accuracy of three-dimensional printing for manufacturing replica teeth. The Korean Journal of Orthodontics, 45(5), 217-225.

Lethaus, B., Poort, L., Böckmann, R., Smeets, R., Tolba, R., & Kessler, P. (2012). Additive manufacturing for microvascular reconstruction of the mandible in 20 patients. Journal of Cranio-Maxillofacial Surgery, 40(1), 43-46.

Liu, Y. F., Xu, L. W., Zhu, H. Y., & Liu, S. S. Y. (2014). Technical procedures for template-guided surgery for mandibular reconstruction based on digital design and manufacturing. Biomedical engineering online, 13, 1-15.

Maciejewski, A., Szymczyk, C., Wierzgoń, J., & Półtorak, S. (2005). Microsurgical techniques in the reconstruction of postresective defects of the mandible – proposition of an algorithm. Czasopismo Stomatologiczne, 58(7), 47-59.

Milovanović, J., Stojković, M., Trifunović, M., & Vitković, N. (2020). Review of bone scaffold design concepts and design methods. Facta Universitatis, Series: Mechanical Engineering. https://doi.org/10.22190/FUME200328038M

Orabona, G. D. A., Abbate, V., Maglitto, F., Bonavolontà, P., Salzano, G., Romano, A., & Califano, L. (2018). Low-cost, self-made CAD/CAM-guiding system for mandibular reconstruction. Surgical oncology, 27, 200-207.

Otawa, N., Sumida, T., Kitagaki, H., Sasaki, K., Fujibayashi, S., Takemoto, M., ... & Matsushita, T. (2015). Custom-made titanium devices as membranes for bone augmentation in implant treatment: Modeling accuracy of titanium products constructed with selective laser melting. Journal of Cranio-Maxillofacial Surgery, 43(7), 1289-1295.

Salmi, M., Paloheimo, K. S., Tuomi, J., Wolff, J., & Mäkitie, A. (2013). Accuracy of medical models made by additive manufacturing (rapid manufacturing). Journal of Cranio-Maxillofacial Surgery, 41(7), 603-609.

Stojković, M., Trifunović, M., Milovanović, J., & Arsić, S. (2022). User defined geometric feature for the creation of the femoral neck enveloping surface. Facta Universitatis, Series: Mechanical Engineering, 20(1), 127-143.

Stojkovic, M., Veselinovic, M., Vitkovic, N., Marinkovic, D., Trajanovic, M., Arsic, S., & Mitkovic, M. (2018). Reverse modelling of human long bones using T-splines-case of tibia. Tehnicki Vjesnik, 25, 1753-1760.

Tsai, M. J., & Wu, C. T. (2014). Study of mandible reconstruction using a fibula flap with application of additive manufacturing technology. Biomedical engineering online, 13, 1-15.

Turek, P. (2019). Automating the process of designing and manufacturing polymeric models of anatomical structures of mandible with Industry 4.0 convention. Polimery, 64, 522-529.

Turek, P. (2021). Evaluation of the auto surfacing methods to create a surface body of the mandible model. Reports in Mechanical Engineering, 3(1), 46-54.

Turek, P., & Budzik, G. (2021). Estimating the Accuracy of Mandible Anatomical Models Manufactured Using Material Extrusion Methods. Polymers, 13(14), 2271.

Turek, P., Pakla, P., Budzik, G., Lewandowski, B., Przeszłowski, Ł., Dziubek, T., & Frańczak, J. (2021). Procedure increasing the accuracy of modelling and the manufacturing of surgical templates with the use of 3D printing techniques, applied in planning the procedures of reconstruction of the mandible. Journal of Clinical Medicine, 10(23), 55-69.

Vitkovic, N., Stojkovic, M., & Mitkovic, M. (2021). Designing of patient-specific implant by using subdivision surface shaped on parametrized cloud of points. Tehnički vjesnik, 28(3), 801-809.

Wang, Y. Y., Zhang, H. Q., Fan, S., Zhang, D. M., Huang, Z. Q., Chen, W. L., & Li, J. S. (2016). Mandibular reconstruction with the vascularized fibula flap: comparison of virtual planning surgery and conventional surgery. International journal of oral and maxillofacial surgery, 45(11), 1400-1405.

Weitz, J., Wolff, K. D., Kesting, M. R., & Nobis, C. P. (2018). Development of a novel resection and cutting guide for mandibular reconstruction using free fibula flap. Journal of Cranio-Maxillofacial Surgery, 46(11), 1975-1978.

How to Cite
Turek, P., Jońca, K., & Winiarska, M. (2023). Evaluation of the accuracy of the resection template and restorations of the bone structures in the mandible area manufactured using the additive technique. Reports in Mechanical Engineering, 4(1), 39-46. https://doi.org/10.31181/rme040127022023t